### changed 0 to 1

master Thomas Johnson 2 years ago
parent
commit
b1841c6e73
1 changed files with 2 additions and 2 deletions
1. 4
presentation.tex

#### 4 presentation.tex View File

 @ -42,7 +42,7 @@ Given $n = pq$, where $p$ and $q$ are prime:   \begin{itemize} \item<2-> Pick a random element $a \in \mathbb{Z}/n\mathbb{Z}$. \item<3-> Compute the order $r$ of $a$ using the oracle, so that $a^r \equiv 0\ (\mathrm{mod}\ n)$. \item<3-> Compute the order $r$ of $a$ using the oracle, so that $a^r \equiv 1\ (\mathrm{mod}\ n)$. \item<4-> If $r$ is odd or $a^{\frac{r}{2}} \equiv -1\ (\mathrm{mod}\ n)$, restart the procedure. \item<5-> Let $s \equiv a^{\frac{r}{2}}\ (\mathrm{mod}\ n)$. Compute $s + 1$ and $s - 1$. One of these will be a factor of $n$. \end{itemize} @ -121,7 +121,7 @@ which is true when the string $b$ is lexicographically after $w$. This can be im \frametitle{Proof (continued...)} At last, consider, given some pivot string $w$ in the $2^k$ space of strings, the formula: $$ EncryptsToC(X) && LexicographicallyAfterW(X) EncryptsToC(X) \&\& LexicographicallyAfterW(X) $$ Applying the SAT oracle to this formula will tell us if there is a bitstring in the upper half of the search space that is the desired plaintext string. We can run binary search using this, and acquire the desired plaintext in linear time. \end{frame}